47 research outputs found

    Evaluation of piezodiagnostics approach for leaks detection in a pipe loop

    Get PDF
    Pipe leaks detection has a great economic, environmental and safety impact. Although several methods have been developed to solve the leak detection problem, some drawbacks such as continuous monitoring and robustness should be addressed yet. Thus, this paper presents the main results of using a leaks detection and classification methodology, which takes advantage of piezodiagnostics principle. It consists of: i) transmitting/sensing guided waves along the pipe surface by means of piezoelectric device ii) representing statistically the cross-correlated piezoelectric measurements by using Principal Component Analysis iii) identifying leaks by using error indexes computed from a statistical baseline model and iv) verifying the performance of the methodology by using a Self Organizing Map as visualization tool and considering different leak scenario. In this sense, the methodology was experimentally evaluated in a carbon-steel pipe loop under different leaks scenarios, with several sizes and locations. In addition, the sensitivity of the methodology to temperature, humidity and pressure variations was experimentally validated. Therefore, the effectiveness of the methodology to detect and classify pipe leaks, under varying environmental and operational conditions, was demonstrated. As a result, the combination of piezodiagnostics approach, cross-correlation analysis, principal component analysis, and Self Organizing Maps, become as promising solution in the field of structural health monitoring and specifically to achieve robust solution for pipe leak detection.Peer ReviewedPostprint (author's final draft

    PCA based stress monitoring of cylindrical specimens using PZTs and guidedwaves

    Get PDF
    Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2”) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1”) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application.Peer ReviewedPostprint (published version

    Implementation of a piezo-diagnostics approach for damage detection based on PCA in a linux-based embedded platform

    Get PDF
    The implementation of damage-detection methods for continuously assessing structural integrity entails systems with attractive features such as storage capabilities, memory capacity, computational complexity and time-consuming processing. In this sense, embedded hardware platforms are a promising technology for developing integrated solutions in Structural Health Monitoring. In this paper, design, test, and specifications for a standalone inspection prototype are presented, which take advantage of piezo-diagnostics principle, statistical processing via Principal Component Analysis (PCA) and embedded systems. The equipment corresponds to a piezoelectric active system with the capability to detect defects in structures, by using a PCA-based algorithm embedded in the Odroid-U3 ARM Linux platform. The operation of the equipment consists of applying, at one side of the structure, wide guided waves by means of piezoelectric devices operated in actuation mode and to record the wave response in another side of the structure by using the same kind of piezoelectric devices operated in sensor mode. Based on the nominal response of the guide wave (no damages), represented by means of a PCA statistical model, the system can detect damages between the actuated/sensed points through squared prediction error (Q-statistical index). The system performance was evaluated in a pipe test bench where two kinds of damages were studied: first, a mass is added to the pipe surface, and then leaks are provoked to the pipe structure by means of a drill tool. The experiments were conducted on two lab structures: (i) a meter carbon-steel pipe section and (ii) a pipe loop structure. The wave response was recorded between the instrumented points for two conditions: (i) The pipe in nominal conditions, where several repetitions will be applied to build the nominal statistical model and (ii) when damage is caused to the pipe (mass adding or leak). Damage conditions were graphically recognized through the Q-statistic chart. Thus, the feasibility to implement an automated real-time diagnostic system is demonstrated with minimum processing resources and hardware flexibility.Peer ReviewedPostprint (published version

    Sensor fault detection in a damage detection approach based on piezodiagnostics

    Get PDF
    Online monitoring systems demand an adequate operation of sensor system used to acquire structural state measurements. If a damaged sensor record is incorporated in the diagnosis algorithm, it could be generate uncertainties and generate unsuitable alarms. Thus, appropriate operation of sensor system is a critical requirement in order to obtain a high reliability for structural damage diagnosis algorithms. In this work a data-driven procedure is studied in order to mitigate the faulty sensor effect in a monitoring system. The studied method takes advantage of piezo-diagnostics approach, where piezoelectric devices are attached to the surface of the monitored structure to produce guided waves. Thus, piezoelectric measurements are analyzed by applying principal component analysis and cross-correlation, in order to detect abnormal behaviors. In this sense, the squared prediction error Q and Hotelling squared statistical indices are used to observe a typical behaviour caused by sensor problems or structural damages. The methodology is validated on a lab carbon steel pipe section by using scenarios that include electric power failures, disconnecting power cords as well as mass adding. As concluding remark, in this work was possible to separate structural damage and fault sensor states at different clusters.Postprint (published version

    Estimation of dispersion curves by combining effective elastic constants and SAFE method: a case study in a plate under stress

    Get PDF
    This paper presents an approach to calculate dispersion curves for homogeneous and isotropic plates subject to stress, via Semi-Analytical Finite Element and the Effective Elastic Constants, since stresses in the waveguide modify the phase and group velocities of the lamb waves. In the proposed methodology an isotropic specimen subjected to anisotropic loading is emulated by proposing an equivalent stress-free anisotropic specimen. This approximation facilitates determining the dispersion curves by using the well-studied numerical solution for the stress-free cases. The lamb wave in anisotropic materials can be studied by means of the Effective Elastic Constants, which reduces the complexity of the numerical implementation. Finally, numerical data available in literature were used to validate the proposed methodology, where it could be demonstrated its effectiveness as approximated method.Postprint (published version

    Features of cross-correlation analysis in a data-driven approach for structural damage assessment

    Get PDF
    This work discusses the advantage of using cross-correlation analysis in a data-driven approach based on principal component analysis (PCA) and piezodiagnostics to obtain successful diagnosis of events in structural health monitoring (SHM). In this sense, the identification of noisy data and outliers, as well as the management of data cleansing stages can be facilitated through the implementation of a preprocessing stage based on cross-correlation functions. Additionally, this work evidences an improvement in damage detection when the cross-correlation is included as part of the whole damage assessment approach. The proposed methodology is validated by processing data measurements from piezoelectric devices (PZT), which are used in a piezodiagnostics approach based on PCA and baseline modeling. Thus, the influence of cross-correlation analysis used in the preprocessing stage is evaluated for damage detection by means of statistical plots and self-organizing maps. Three laboratory specimens were used as test structures in order to demonstrate the validity of the methodology: (i) a carbon steel pipe section with leak and mass damage types, (ii) an aircraft wing specimen, and (iii) a blade of a commercial aircraft turbine, where damages are specified as mass-added. As the main concluding remark, the suitability of cross-correlation features combined with a PCA-based piezodiagnostic approach in order to achieve a more robust damage assessment algorithm is verified for SHM tasks.Peer ReviewedPostprint (published version

    Embedded piezodiagnostics for online structural damage detection based on PCA algorithm

    Get PDF
    This work discusses a methodology used to implement a data-driven strategy for Structural Health Monitoring. First, the instrumentation of the equipment is detailed by describing the main components to be installed in the test structure in order to produce guide d waves. Specifically, an active piezo active system is used for this purpose , which consists of piezoelectric devices attached to the test structure surface and an ac quisition system. Then, the programming procedure to embed the damage detection algorithm is defined. In particular, the mathematical foundations and software requirements for impleme nting the preprocessing stage, baseline model building, and statistical index computation are specified. As a result, the Odroid-U3 computational core has the capability t o perform online damage assessment. Finally, some validation tests are presented through videos and short real time demonstration. Experimental data are recorded from two test specimens: i.) a lab carbon steel pipe loop built to emulate leak scenarios, and ii.) an aluminum plate, where mass adding is used to emulate reversible damages. The results reported i n this work show the high feasibility of the proposal methodology for obtaining an online embedded monitoring system with several advantages such as low cost, easy configuration, expandability and few computational resourcesPostprint (published version

    Ensemble learning as approach for pipeline condition assessment

    Get PDF
    The algorithms commonly used for damage condition monitoring present several drawbacks related to unbalanced data, optimal training requirements, low capability to manage feature diversity and low tolerance to errors. In this work, an approach based on ensemble learning is discussed as alternative to obtain more efficient diagnosis. The main advantage of ensemble learning is the use of several algorithms at the same time for a better proficiency. Thereby, combining simplest tree decision algorithms in bagging scheme, the accuracy of damage detection is improved. It takes advantage by combining prediction of preliminary algorithms based on regression models. The methodology is experimentally validated on a carbon steel pipe section, where mass adding conditions are studied as possible failures . Data from an active system based on piezoelectric sensors are stored and characterized through the T2 and Q statistical indexes. Then, they are the inputs to the ensemble learning. The proposed methodology allows determining the condition assessment and damage localizations in the structure. The results of the studied cases show the feasibility of ensemble learning for detecting occurrence of structural damages with successful results.Postprint (published version

    Damages detection in cylindrical metallic specimens by means of statistical baseline models and updated daily temperature profiles

    Get PDF
    In previous works, damage detection of metallic specimens exposed to temperature changes has been achieved by using a statistical baseline model based on Principal Component Analysis (PCA), piezodiagnostics principle and taking into account temperature effect by augmenting the baseline model or by using several baseline models according to the current temperature. In this paper a new approach is presented, where damage detection is based in a new index that combine Q and T2 statistical indices with current temperature measurements. Experimental tests were achieved in a carbon-steel pipe of 1m length and 1.5 inches diameter, instrumented with piezodevices acting as actuators or sensors. A PCA baseline model was obtained to a temperature of 21º and then T2 and Q statistical indices were obtained for a 24h temperature profile. Also, mass adding at different points of pipe between sensor and actuator was used as damage. By using the combined index the temperature contribution can be separated and a better differentiation of damages respect to undamaged cases can be graphically obtained.Postprint (published version
    corecore